Taxonomy of Effortless Creation of Algorithm Visualizations

Petri Ihantola, Ville Karavirta, Ari Korhonen and Jussi Nikander
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Laboratory of Information Processing Science

Outline

- What is Algorithm Visualization?
- Motivation & Objectives
- Taxonomy of Effortless Creation of AV
- Example Evaluation of 4 AV systems
- Conclusions

Software Visualization

- Visual = sight (lat.), but
- Visualization = "the power or process of forming a mental picture or vision of something not actually present to the sight"
- Research area in Software Engineering
- Algorithm Visualization is a subset of SV

Example: JAWAA

Areas of Interest

- Visualization Techniques
 - Pretty-printing, graph models, program visualization, algorithm animation, program auralization, specification styles
- Specialized Domains
 - Visualization of object-oriented programming, functional programming, knowledge based systems, concurrent programs, etc.
- Visualization for Software Engineering
 - Integrated Development Environments (IDE)
- Visualization for Education & Evaluation

Motivation

- SV research is technology driven
 - focus on new innovations such as
 - "backward and forward animation" or
 - "multiple views" or
 - "smooth animation"
- Missing connection to CS education research
 - the above are "nice to have", but do they promote learning?
- Need for communication channel between
 - SV developers (SV research) and
 - CS educators (CSE research)
Objectives

1. Methods and tools to **analyse and evaluate** Software Visualizations (SV) (in Educational context)
2. Focus on the “burden of creating new visualizations”, i.e., the **time and effort** required to design, integrate and maintain the visualizations
3. **Taxonomy**: effortlessness in AV systems

Related work

 - technical analysis, no link to CS education
- Questionnaire for CS educators (2004)
 - 22 answers (mostly from SV developers)
- Several other taxonomies and evaluations
 - e.g., Engagement taxonomy, Naps et al. (2003)
- The following taxonomy is a synthesis

Taxonomy

1. **Category 1: Scope**
 - The range or area the tool deals with
 - **Generic tools** like Animal or JAWAA
 - one can produce (almost) any kind content
 - vs. **non-generic** tools like MatrixPro and Jeliot 3
 - content (almost always) related to CS education
 - More fine-grained classification in the paper

2. **Category 2: Integrability**
 - Basically: a number of “features” that are “nice to have” in all SV systems including
 - easy installation and customization
 - platform independency
 - internationalization
 - documentation and tutorials
 - interactive prediction support
 - course management support
 - integration into a hypertext, etc.
 - Bottom line: these are essential, but not sufficient
Category 3: Interaction

• Two kinds of interaction
 • Producer vs. System (PS)
 • resulting new visualization
 • Visualization vs. Consumer (VC)
 • use of the outcome

Producer-System Interaction

• Producer can be, e.g.,
 • teacher creating a new lecture demonstration
 • learner submitting a visualization to be graded

Evaluation based on
 • number of use cases covered in terms of
 • no prior preparation at all
 • requires programming
 • requires programming and annotation/instrumentation
 • time-on-task

Use Cases (Based on Survey 2004)

• Lecture
 • single lecture example (14)
 • answering student’s questions (14)
• Teaching material production
 • on-line illustrations (12)
 • static (e.g., lecturer’s notes) illustrations (12)
• Examination/summative evaluation (12)
• Practice session material
 • exercises (12)
 • demonstrations for tune/race labs (9)
 • demonstrations for student/closed labs (7)
 • demonstrations for student/open labs (6)

Example: Jeliot 3

• especially on-the-fly use like in MatrixPro
 • vs. prior preparation

Example: MatrixPro
Visualization-Consumer Interaction

- Also consumer can be teacher or learner
- Trivial case: consumer = producer
- In evaluation, consumer = learner
- Engagement taxonomy
 - viewing
 - responding
 - changing
 - constructing
 - representing

Example Evaluation of 4 Systems

- Systems visualizing concepts in Algorithms and Data Structures course
 - Animal
 - JAWAA 2
 - Jeliot 3
 - MatrixPro
- Disclaimer: some other systems could have been evaluated instead or as well (actually, we did!). However, these are enough to demonstrate the taxonomy in context of algorithms and data structures.

Evaluation

- Based on
 - journal and conference articles as well as subjective experiments (4 authors) with the systems
 - the latest available version
 - the most obvious way to use the system (i.e., how it is intended to be used by the developer)
 - majority of the use cases (i.e., there can be a small number of use cases in which the evaluation could end up to be different)

Example: JAWAA

JAWAA animation based on instrumenting code (interesting events)

Separate editor available

Example: Animal

Example: Jeliot 3
Example: MatrixPro

Results: Integrability

- All the example systems fulfill most of the requirements
 - Actually, the systems were selected based on some of these criteria in the first place :-)
 - i.e., we ruled out systems that we could not find (anymore), install, etc.
- None of the requirements seems to be impossible to implement in an AV system
- There is no correlation to the other categories

Results: Scope & Interaction

Scope
- Animal and JAWAA can be considered to be general purpose systems, i.e. generic
- MatrixPro and Jeliot 3 are domain-specific tools, i.e., applicable only in CSE

Interaction
- MatrixPro can be used on-the-fly
- Jeliot 3 requires programming and do not support interactive prediction
- Animal and JAWAA require programming and annotation and do not support all the levels of engagement taxonomy

Conclusions

- Taxonomy of Effortless Creation of AV
 - 3 categories: scope, integrability, interaction
 - Applicable only for educational software
- Example evaluation of 4 systems
 - Integrability important, but not sufficient
 - Correlation between scope and interaction:
 - what a system gains in generality it loses in its level of interaction and vice versa
 - No killer applications (yet?) for Data Structures and Algorithms
- In the future, more feedback from the educators needed in order to develop systems further

Thank You!

Any questions or comments?