An Investigation of Potential Success Factors for an Introductory Model-Driven Programming Course

Michael Caspersen, Dept. of Computer Science University of Aarhus, Denmark
mec@daimi.au.dk

Jens Bennedsen, IT University West, Denmark
jbb@it-vest.dk

Goal

• Improve the course design of a CS1 model-driven programming course.
• Improve the knowledge of the success of object-first CS1 courses and compare it to “traditional” CS1 courses
• Find new factors
• Not to predict the grade

Previous Research

Ventura
Leeper & Silver
Pritchard & Wilson
Wilson & Shrock
Hagan & Markham

Results

• Math and course activity has a positive correlation with the exam score
• Gender, intended major, years at the university, team had no correlation with the exam score

Success

• Grade at the final exam
 – Normally binary pass/fail
 – We post-marked the exams
 • Scale: 00, 03, 5, 6, 7, 8, 9, 10, 11, 13
 • Six or above means pass -> all post marked exercises with six or above did also pass
• No other grades count
 – No assignment or other during the course

Model driven CS1 course

• First half of a CS1 course
 – 7 weeks
• Goals
 – use conceptual modelling in relation to preparing simple object-oriented programs,
 – implement simple OO-models in a modern programming language,
 – use fundamental elements in a modern programming language,
 – use selected class libraries.
• Progression according to complexity of the underlying class model.
Exam

• 20 students are tested concurrently.
• The test takes place in a lab.
• Nine small progressive programming tasks,
• 1 hour in total, approx. 30 min of actual programming
• All exercises are instances of the same generic exercise

Exam - example

1. Create a class, Track, that represents a piece of music; the Track class is specified in the following UML diagram:

```
+ artist
+ songName
+ minutes
+ seconds

String artist, String songName, int minutes, int seconds
```

2. The four field variables must be initialized in a constructor (through four parameters of suitable types). The method listing must return a string representation for a piece of music, e.g.: "Yesterday: The Beatles (2:05)."

3. Create a test method named exam in class Driver. The method must be static, have return type void, and have no parameters.

4. Create two Track objects ...

5. Create a new class, Playlist, representing a collection of Tracks; the Playlist class and its relation to the Track class is specified in the following UML diagram:

```
+ playlistName

String playlistName
```

```
void addTrack(Track t)
void removeTrack(Track t)
Track findShortestTrack()
```

Research questions

• What is the relationship of mathematical ability to model-based CS1?
• What is the relationship of gender to model-based CS1?
• What is the relationship of major/intended major to model-based CS1?
• What is the relationship of course work to model-based CS1?
• What is the relationship of years at the university to model-based CS1?
• What is the relationship of the team to model-based CS1?

Method

• Data sources: Adm-sys, TA’s, web-site
• Multiple regression analysis
• Start with a model including all variables and interaction variables
 – 34.4% explanation power
 – Eliminate one by one insignificant variables at the 95% confidence interval.
 – End up with a model with two variables explaining 24.4% of the variation of the exam score

The students

• Approximately 235 students
 – from a variety of study programmes
 • computer science,
 • mathematics,
 • geology,
 • nano science,
 • economy,
 • multimedia,
 – 40% are majors in computer science.

Math

• The students score from their high school exam.
 – Three levels: A, B, C – A is required.
• Result
 – the math score from high school has a positive impact on the exam grade
 – math grade alone accounts for over 15% (15.4%) of the variance of the final grade.
Course work

- During the course, the students are required to complete five out of six weekly exercises.
- The TA's evaluate the exercises and the score for each exercise is encoded as one of the numbers 1, 2, or 4:
 1. Perfect, no significant errors
 2. OK, small errors
 4. Not accepted/Not handed in
- In case a student got a “4”, he had the possibility of resubmitting the exercise once.

Course work - results

- It has a positive impact on the exam grade.
- Course work alone accounts for 7% of the variance of the final grade
 – only half the impact of the math grade from high school.

Study age

- The number of years the student has been enrolled at the university. Integer value from 0 – 20. Students enrolled in 1984 or earlier were coded as 20.
- Not significant neither at the 95% confidence interval
 – 90%: the variable is not significant in itself but in combination with the math grade, it has a positive impact; with course work, it has a negative impact. These two combinations of variables accounts for 2% of the variation each

Gender

- It is not significant, neither at the 95% confidence interval nor at the 90% confidence interval.
- We can therefore not accept the hypothesis that gender has an impact on the exam score.

Major

- 4 variables: COMPSCIENCE, GEOLOGY, MATHEMATICS, NANOSCIENCE
- None are significant at the 95% conf. interval
- We can reject the hypothesis about students majoring in comp. science perform better.
- 90% confidence interval: COMPSCIENCE and GEOLOGY were significant.
 – At this level we can accept the hypothesis of a positive impact of majoring in computer science (it accounts for 3.6% of the variance).
 – GEOLOGY is significant, NANOSCIENCE and MATHEMATICS are not – we can not say anything about the students not majoring in computer science.

Team

- There is an a priori correlation between team and intended major because of the way students are allocated to teams.
- Since intended major is not significant, the same is true for team.
Regression formula

\[
\text{GRADE} = 1.118 + 0.589 \times \text{MATH} + 0.341 \times \text{COURSEWORK}
\]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unstandardised coefficients</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSEWORK</td>
<td>0.341</td>
<td>0.000</td>
</tr>
<tr>
<td>MATH</td>
<td>0.589</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Discussion

• Math \(L \)
• Course work \(J \)
• 24.4 % explanation power \(\Rightarrow \) lot of other factors
• Conclusions: Hard to give since it is based on our course (and so is all the other studies)

Future work

• Motivation.
• Effort.
• Power of abstraction.
• Prior programming experience.
• Emotional health/well-being

Ad

• Research on pedagogical patterns – please take survey sent to the SIGCSE mailing list
 – If you are not on the mailing list let me know